
Image Access
Services Specification

National Imagery and Mapping Agency
United States Imagery and Geospatial System

CIO Document No. CIO-2068

Release Date: 13 March, 1997
Version 1.1

ii

Acknowledgments

Many individuals and organizations provided support and technical contributions to this work,
and acknowledge their participation here:

Dave Barnum (GTE)
Dwight Brown (NPIC/NEL)
Ron Burns (CIO)
Jeff Bushmire (Booz•Allen Hamilton)
Keith Butters (Rome Laboratories)
John Carney (Kodak)
Joe Coco (TASC)
Tim Daniel (CIO)
Bill Dowling (MITRE)
Chris Deschenes (TASC)
John Files (LMMS)
C. Scott Foshee (Booz•Allen Hamilton)
Rich Garrison (LMMS)
Leslie Gelman (SES)
Charlie Green (Sierra Concepts, Inc.)
Andy Hall (Rome Laboratories)
Ray Harrington (LMMS)
Tom Herron (MITRE)
Peggy Hwu (Booz•Allen Hamilton)
Don Joder (Booz•Allen Hamilton)
Mark Krug (SAIC)
Ros Lewis (Aerospace)
Dave Lutz (MITRE)
Raphael Malveau (MITRE)
John Marsh (MITRE)
Greg McBroome (SAIC)
Jim Meck (Booz•Allen Hamilton)
Tom Moore (GTE)
Tom Mowbray (MITRE)
Jack Needham (Harris)
Rick Nehrboss (Booz•Allen Hamilton)
Bill Nell (LMMS)
Rollie Olson (Loral)
Don Panzenhagen (Booz•Allen Hamilton)
Paul Parowski (Booz•Allen Hamilton)
Kathleen Perez-Lopez (Hughes)
Ed Rose (TRW)
Kathy Saint (Harris)
John Salerno (Rome Laboratories)
Paul Silvey (MITRE)
Glen Speckert (TASC)
Noah Spivak (Booz•Allen Hamilton)
Shel Sutton (MITRE)
Alexis Thurman (Booz•Allen Hamilton)
John Tisaranni (MITRE)
Dave Weight (LMMS)
Jocelyn Yamamoto (TRW)
Ron Zahavi (MITRE)

Revision History

• Image Access Facility, Version 0.1 Straw 23 May 1995.

• Image Access Facility, Version 0.2 Tin 11 June 1995.

iii

• Image Access Facility, Version 0.3 Aluminum 19 June 1995.

• Image Access Facility, Version 0.4 Copper - For USIS release June 21, 1995.

• Image Access Facility, Version 0.5 Nickel - Preliminary draft release for Image
Access Working Group (IAWG) June 29, 1995.

• Image Access Facility, Version 0.6 Iron - This release will contain a relatively
complete description of semantics and sequencing for sample implementation
prototypers. July 12, 1995.

• Image Access Facility, Version 0.7 Silver - This release addresses comments
received. September 6, 1995.

• Image Access Facility and Catalog Access Facility, Version 0.8 Gold - This
release contains extensions based upon the additional architecture mining.
February 8, 1996.

• Image Access Facility and Catalog Access Facility, Version 0.85 Gold Interim -
Update for release and comment on March 22, 1996.

• Image Access Services Specification, Version 0.9 Platinum - Revisions based
upon comment, April 24, 1996.

• Image Access Services Specification Version 1.0 - ICCB Configuration-
controlled, pilot operational specification for contractor and commercial
prototyping and interoperability testing, June 20, 1996.

• Image Access Services Specification Version 1.1 -
Revised to remove TBR’s and TBD concerning the PNF and IDF. Released for
comments December 6, 1996

• Image Access Services Specification Version 1.1 -
Submitted to CCB December 20, 1996.

iv

Planned Releases

• Image Access Services Specification Version 2.0 - Development engineering
specification for guidance review by standards working groups and certification
testing, May 1997.

v

Preface

This document defines common interfaces for the United States Imagery and Geospatial
System (USIGS) image access services.

In the short term, this is a pre-operational specification activity, that is defining the client
interfaces for the image access services. This will support interoperability testing of clients and
implementations.

The short term goal is to test alternative implementations of clients and library
implementations supporting common software interfaces, so that the community is able to
demonstrate interoperability (for image access) among multiple independently developed
USIGS software components. The lessons learned from the pilot implementations will be
incorporated into the specification prior to submission for review and feedback through the
standards process (CIIWG and ISMC).

The early releases (prior to 2.0) are intended for review and prototype implementation.
This specification will change over the course of this activity and follow-on activities that lead
toward operational capabilities. Extensions to the specification are anticipated to address new
capabilities and evolving user needs.

This specification was prepared consistent with industry practices and is modeled after
those being prepared by the Object Management Group (OMG) industry consortium. This
approach is consistent with guidelines and direction established by the NIMA Common
Imagery Interoperability Working Group (CIIWG).

vi

Table Of Contents

ACKNOWLEDGMENTS ...II
REVISION HISTORY...II
PLANNED RELEASES ... IV

PREFACE ... V

1. OVERVIEW ...1

1.1 BACKGROUND ..1
1.2 FACILITIES OVERVIEW ...1

2. INTERFACE OVERVIEW...4

2.1 SERVER INTERFACE ..4
2.2 PARAMETERS INTERFACE ...4
2.3 IA (IMAGE ACCESS) INTERFACE ...4
2.4 CA (CATALOG ACCESS) INTERFACE..5

2.4.1 Boolean Query Syntax..6
2.5 PN (PROFILE & NOTIFICATION) INTERFACE ..6
2.6 ADDITIONAL ASPECTS..6

2.6.1 Product References...6
2.6.2 Exception Information..7

3. IMAGE ACCESS SERVICES DEFINITION...8

3.1 IAS MODULE ..8
3.1.1 Type Definitions...8

3.1.1.1 Storage Specifications..8
3.1.1.2 Request Identifiers..8
3.1.1.3 Name Values ..8
3.1.1.4 Response Service..9
3.1.1.5 Completion State..9
3.1.1.6 Element Type Enumeration..9
3.1.1.7 Buffer Union Type ...10
3.1.1.8 Region Specification Structure...10
3.1.1.9 Region Data Structure..10
3.1.1.10 ImageExceptionInfo...11
3.1.1.11 GeoCoords..11
3.1.1.12 Image Location Specification...11
3.1.1.13 Region Parameters..12
3.1.1.14 Display and Tile Region Specifications...13
3.1.1.15 QueryId And QueryResults..13
3.1.1.16 QueryStatus ..14

3.1.2 Exception Information..15
3.1.2.1 Exceptions ..15

3.2 THE INTERFACES...18
3.2.1 Server Interface...18

3.2.1.1 Open Operation ..18
3.2.1.2 Close Operation..18

3.2.2 Parameters Interface...19

vii

3.2.2.1 Get Parameters Operation ..19
3.2.2.2 Set Parameters Operation...20

3.2.3 Product interface...23
3.2.4 Image Product Interface ...23
3.2.5 IA Interface...23

3.2.5.1 Disseminate Operation...24
3.2.5.2 Completion Checking Operation..24
3.2.5.3 Cancel Operation..25
3.2.5.4 Create Operation...25
3.2.5.5 Get Subimage Operation..26
3.2.5.6 Open Array Operation..27
3.2.5.7 Close Array Operation..28
3.2.5.8 Get Region Operation...28
3.2.5.9 Get Multiple Regions Operation..29

3.2.6 CA Interface ..30
3.2.6.1 Boolean Query Operation...30
3.2.6.2 Polygonal Query Operation..31
3.2.6.3 Elliptical Query Operation ...32
3.2.6.4 Point Query Operation..33
3.2.6.5 Get Results Operation ..34
3.2.6.6 Free Results Operation...34

3.2.7 PN Interface..35
3.2.7.1 List Queries Operation ...36
3.2.7.2 Remove Query operation..36
3.2.7.3 Request Notification Operation..37

3.2.8 PNF_Callback Interface...37
3.2.8.1 Notify Operation...37

4. ACCESS MANAGEMENT INTERFACE ..39

4.1 OVERVIEW ..39
4.2 AMS INTERFACE ..39

4.2.1.1 Use Modes Operation...40
4.2.1.2 Check Availability Operation...40
4.2.1.3 Request Availability Operation..40

5. BOOLEAN QUERY SYNTAX ...41

5.1 OVERVIEW ..41
5.2 CLIENT PARADIGM ...41
5.3 BNF RULES ..43
5.4 BNF SEMANTICS ..44
5.5 ATTRIBUTE METADATA..44

6. BIBLIOGRAPHY...45

7. GLOSSARY ..47

8. ACRONYMS...49

9. POINTS OF CONTACT..50

10. APPENDIX A: IMAGE ACCESS FACILITY IDL... A-1

viii

11. APPENDIX B: ACCESS MANAGEMENT INTERFACE IDL..B-1

12. APPENDIX C: REFERENCE OMG STANDARD IDL .. C-1

CORBA STANDARD EXCEPTIONS..C-1

13. APPENDIX D: RELATED FACILITIES... D-1

THE MENSURATION FACILITY... D-1
THE IMAGE SECURITY FACILITY ... D-1
THE LOCATOR SERVICE... D-1

1

1. Overview

1.1 Background

The Image Access Services (IAS) specification addresses the core
interoperability requirements of the United States Imagery and Geospatial
System (USIGS) for client access to imagery and imagery-based information
(collectively referred to as image products). The supported operations include
image product discovery, metadata attribute retrieval, whole product retrieval,
image region retrieval, and client product creation.

This IAS specification defines the interface requirements for the
following facilities from the Common Imagery Interoperability Facilities
(CIIF) reference model:

1. Image Access Facility (IAF)
2. Catalog Access Facility (CAF)
3. Profile & Notification Facility (PNF)

The Image Access Facility (IAF) defines interfaces for retrieval of image
products. The range of supported products includes full frame images, image
chips, subimages, and display regions. The facility also supports the creation
(uploading) of new products by the client.

The Catalog Access Facility (CAF) defines interfaces for query-based
discovery of image products and retrieval of metadata attributes. Supported
queries include attribute-based Boolean and geographic queries.

The Profile and Notification Facility (PNF) enables clients to create and
manage interest profiles that serve as standing catalog search specifications.
The standing requests allow users to register their notification preferences, so
that the facility implementation can detect when new catalog entries satisfy
their profile.

1.2 Facilities Overview

The IAS facilities are specified using the OMG Interface Definition
Language (IDL) [5]. IDL is a language-independent notation for specifying
software interfaces. IDL can be readily compiled into software interfaces for
various programming languages including C, C++, Ada95, and Smalltalk.

The interface hierarchy shows how the interfaces defined in the facilities
reuse each other’s definitions through inheritance. Figure 1-2 shows the

2

interface hierarchy. Each box represents an interface. The interface types are
identified by their type name in bold text. Below the interface types are the
operations defined in the Interface Definition Language (IDL) definitions.
Inheritance relationships are shown by arrows, with the end of the arrow
pointing to the inheriting interface class.

Server

open
close

Parameters

get_parameters
set_parameters

Product
CA - Catalog Access

boolean_query
polygonal_query
elliptical_query
point_query
get_ results
free_results

IA - Image Access

ImageProduct

PN - Profile & Not.

list_queries
remove_query
request_notification
request_push

get_subimage
open_array
close_array
get_region
get_multiple_regions
disseminate
check_completion
cancel
create

PNF_Callback

notify
push

Figure 1-2 The Image Access Services Interface Hierarchy
[This hierarchy illustrates the commonality and specializations in interface architecture—
arrows indicate specification inheritance]

There are two principal interfaces that clients use to access images: IA
(Image Access) and CA (Catalog Access). The Image Access interface
provides operations for transfer of image products. The Catalog Access
interface provides operations for image product discovery and attribute
retrieval. Using these interfaces, clients obtain product references from the
catalog and use them to retrieve images from the library.

The server and parameters interfaces are abstract interfaces inherited by
both IA and CA interfaces. PN (Profile & Notification) is a specialization of
the CA interface. The PNF_Callback interface is a client-side interface to
enable a client to receive notifications from a PNF server concerning standing
queries.

The data-like interfaces (Product and ImageProduct) provide a capability
for referencing information products. The Product interface is the most
general form of reference. A specialized reference (ImageProduct) exists for
imagery information products.

3

The above interfaces are discussed further in Section 2. Their
specifications are contained in Sections 3 through 5.

4

2. Interface Overview

2.1 Server Interface

The Server interface is an abstract interface; it is not intended for
standalone implementation. This interface contains specifications for basic
connection management. These methods are inherited by the image library and
catalog. They provide a consistent model for connection management for these
interfaces.

2.2 Parameters Interface

The Parameters interface is an abstract interface inherited by other
interfaces. This interface has the capability to retrieve and change parameter
values that are closely related to particular objects and particular client
interactions with the objects. For example, the parameters can include
metadata that describes the object. Parameters can also include some
controllable client-specific characteristics that are used to modify the behavior
of other operations, such as retrieval of array regions.

2.3 IA Interface

The IA interface addresses the transfer of whole information products.
Whole products comprise information products stored in file formats. For
example, these may be full images (with or without associated headers), image
chips, or other image products.

To retrieve a product, a request is made for product transfer, then the
processing of the request occurs in the background through a mechanism such
as the File Transfer Protocol (FTP). Other comparable mechanisms include
HTTP and the OMG Data Interchange Facility. The choice of transfer
mechanism is a property of the implementation, not of the interface
specification. Standards requirements for the product transfer mechanisms are
defined by the USIGS Standards and Guidelines [1]. There is a quality of
service associated with each request, which allows the client to specify
delivery requirements which can be either immediate or queued.

The retrieval interface provides a basic capability for confirmation of
receipt through the request identifiers and the completion status checking
operation.

5

This interface also provides basic capabilities for creating new products
(i.e. uploading to the library) from appropriately authorized clients. The
product request interface is not intended to be a complete data management
interface.

The IA interface also is a general-purpose interface for the efficient
retrieval of image regions and other array data. This method allows a client to
access arbitrarily large source images.

It may be that only a subset of the items in the library are suitable to be
retrieved by this method. Those which do, are identified as such in the catalog
metadata.

Because array retrieval does not necessarily transfer whole products, this
interface necessitates that the catalog metadata contain descriptive attribute
information equivalent to the image and product file header information,
including references to related products.

The IA (Image Access) interface reuses definitions from the Server
interface and Parameters interface.

A key imagery-specific capability in IAF is subimage retrieval. An
operation is provided for retrieving a subimage based upon a geographic
region in an existing image array product. The subimage will consist of image
regions that provide coverage of the requested geographic area.

Image access provides two primary modes of retrieval. The first mode is
retrieval to a specific location, which may be a pathname or other form of
address. This form of retrieval is limited to whole product transfers.

The second mode enables transfer of partial image products, i.e. array
regions, in response to client requests.

2.4 Catalog Access Interface

The Catalog Access interface contains imagery-specific interfaces for
searching catalog metadata. Two forms of query constraints are provided:
attribute-based and geographic. Attribute-based queries are expressed using
the Boolean Query Syntax (See Section 6). The Catalog Access APIs include
capabilities for geographic querying in several forms (polygon, ellipse, and
point), that are suitable to satisfy the range of geographic search needs in the
imagery community.

Image access and catalog access are related and synergistic. Catalog
access usually precedes image access, returning product references for image

6

product retrieval. Catalog access enables image product discovery and
provides access to metadata describing image products. Once the image is
identified and its attributes are known, image access provides a means to
retrieve the data. The catalog serves as an enabling facility for identification
of image products of interest.

2.4.1 Boolean Query Syntax

The Boolean query syntax is a means of specifying attribute-based search
expressions. The Boolean query syntax is used for image catalog queries.

The Boolean Query Syntax is included in this specification to:
• Provide uniform query syntax and views
• Simplify client and catalog processing
• Decouple clients from physical schema

and catalog implementations
• Associate queries directly with attribute sets, and
• Assure interoperability

2.5 PN interface

The PN interface enables clients to register standing queries on the image
catalog. These standing queries comprise a user profile. A related interface
(PNF_Callback) supports the notification of clients when new catalog entries
match the profile’s queries. The PN interface is a specialization of (inherits
from) the CA (Catalog Access) interface.

2.6 Additional Aspects

2.6.1 Product References

An interface called “Product” is defined in the IDL. Its purpose is to
provide robust references to arbitrary information products in a distributed
environment. The role of a product reference is equivalent to a Universal
Resource Locator on the Internet. The product reference might even have a
hyperlink encoded in its representation, but this is an implementation choice,
not a requirement of this specification.

A Product reference is an opaque structure which contains any necessary
information needed to locate and retrieve the product, such as library location
information and file path names. Since the Product reference contains all the
necessary information for retrieval in a distributed system, distributed
processing issues can be handled transparently by infrastructure software.

7

The AM (Access Management) interface is also defined within this
document. It intent is to provide a simple mechanism for a client to interact
with the management aspects of the catalog and library. It is intended to allow
a client to inquire and request changes in the internal aspects of the catalog
and library that directly effect the interaction of the client with the catalog and
library.

2.6.2 Exception Information

A set of arguments called ExceptionInfo is returned from each operation
which terminates abnormally with a user-defined exception. User-defined
exceptions are error conditions which are explicitly defined in the image
access services IDL.

There is also a standardized set of general purpose exceptions defined by
industry which address the most common reasons for failures, including
communication and network errors [5] (Appendix D).

If an operation completes successfully, the exception value includes a
completion status of “COMPLETED_YES” [5]. This is a positive
confirmation that the requested service achieved satisfactory completion.

8

3. Image Access Services Definition
This section defines the IDL, semantics, and sequencing of the Image

Access interfaces in detail. Each definition includes a corresponding IDL
segment which is in the following typeface:

// Example IDL segment - An IDL comment

3.1 IAS Module

module IAS {

Module “IAS ” provides an enclosing scope for all of the interfaces, type
definitions, exception definitions, and operation signatures.

3.1.1 Type Definitions

3.1.1.1 Storage Specifications

typedef any LocationSpec;
typedef seq uence<LocationSpec> LocationSpecList;

A location specification contains information necessary for the transfer of
stored information. The contents include the necessary information for
accessing information transfer mechanisms such as FTP, HTTP, or the OMG
Data Interchange Facility.

The LocationSpecList sequence is a variable length list of location
specifications. A location specification can be used to denote the source for
information or the destination for information.

3.1.1.2 Request Identifiers

typedef string RequestId;
typedef sequence<RequestId> RequestIdList;

The request identifier is a mechanism for tracking requests. The server
implementation generates the request identifier, which is unique for each
request. The RequestIdList type is used to convey a set of request identifiers.

3.1.1.3 Name Values

9

struct NameValue { string name; any value; };
typedef sequence<NameValue> NameValueList;
typedef sequence<string> NameList;

The NameValueList is a generally useful structure for conveying named
attribute values. The NameList sequence is a sequence of identifiers used as
an argument to convey a list of names corresponding to a NameValueList data
type.

3.1.1.4 Response Service

enum ResponseService { IMMEDIATE, QUEUED };

Qualities of service are defined by the ResponseService enumeration.
The values are IMMEDIATE and QUEUED. The IMMEDIATE service is
defined as “best effort” performance. The queued service defines a lower
priority “when possible” effort , the status of which can be assessed by the
check_completion operation.

3.1.1.5 Completion State

enum CompletionState { COMPLETED, IN_PROGRESS, ABORTED,
CANCELED, PENDING, OTHER };

The completion states are described as follows. The state COMPLETED
is returned if a normal successful termination has already occurred. The state
IN_PROGRESS is returned if the request is in an active state of execution and
has not yet encountered any error conditions. The state ABORTED is returned
if an error condition has caused an abnormal termination. The state
CANCELED is returned when the request has been canceled by a previous
request. The state PENDING is returned if a request is known and pending for
future service, but the transfer has not started. The PENDING state only
applies to requests submitted with a ResponseService mode of QUEUED. The
state OTHER indicates that the request is in some state of completion, not
indicated by the above states. In all cases, the string state_information may
return additional information.

3.1.1.6 Element Type Enumeration

enum ElementType { BITDATA, BYTEDATA, SBYTEDATA, INT2DATA,
SINT2DATA, INT4DATA, SINT4DATA, FLOAT4DATA, COMPLEXDATA,
FLOAT8DATA, OTHERDATA };

Array retrieval comprises direct access to array elements (or pixels); the
various element types are defined here. They include binary (BITDATA),

10

unsigned bytes (BYTEDATA), signed bytes (SBYTEDATA), unsigned short
integers (INT2DATA), signed short integers (SINT2DATA), unsigned long
integers (INT4DATA), signed long integers (SINT4DATA), floating point
(FLOAT4DATA), complex numbers (COMPLEXDATA), double precision
floating point (FLOAT8DATA), and other miscellaneous representations
(OTHERDATA).

3.1.1.7 Buffer Union Type

union Buffer switch (ElementType) {
case BITDATA: sequence<octet> bit_data;
case BYTEDATA: sequence<octet> ubyte_data;
case SBYTEDATA: sequence<char> byte_data;
case INT2DATA: sequence<unsigned short> ushort_data;
case SINT2DATA: sequence<short> short_data;
case INT4DATA: sequence<unsigned long> ulong_data;
case SINT4DATA: sequence< long> long_data;
case FLOAT4DATA: sequence<float> float_data;
case COMPLEXDATA: sequence<float> complex_data;
case FLOAT8DATA: sequence<double> double_data;
default: sequence<octet> other_data; };

Regions of each element type have a representation as an IDL sequence
in this union. All array regions can be represented by values of this union
type.

The listed data types are a superset of the elementary types for pixels
defined in ISO IPI [19].

3.1.1.8 Region Specification Structure

typedef any Region Spec;
typedef sequence<RegionSpec> RegionSpecList;

The RegionSpec identifies a particular region within an array (or image).
The choice of parameters is application defined. The contents of RegionSpec
attributes are used for only one request. Other attributes established for use
across multiple requests are established by another approach.

3.1.1.9 Region Data Structure

struct RegionData {
RegionSpec region_spec;
NameValueList region_header;
ElementType element_type;
Buffer region_data;
};

11

typedef sequence<RegionData> RegionDataList;

The region data structure contains the elements (or pixels) of the region
and some self-descriptive information. The RegionSpec member describes the
region and may differ from the input parameters specified in a request. The
ElementType member defines the representation of the elements (or pixels).
The Buffer member contains the element values. By default, element values
will be stored in row-major order in the Buffer sequence.

Attributes returned in the region_header describe the characteristics and
format of the returned data. For example, a region thickness may be identified
for the number of ElementType values correspond to each pixel.

Thick pixels (such as color images) may be interleaved in the sequence or
not based upon another attribute for interleaving (For example, controlled
through the IAF Parameters Interface).

3.1.1.10 ImageExceptionInfo

struct ImageExceptionInfo {
short status_code;
string status_text;
string exception_type;
};

The ImageExceptionInfo structure is supplied by all IAS implementations
to populate the exception_info value returned by all operations. Use of the
member fields is implementation defined. Implementations of IAF will use
this structure for returning user exceptions.

3.1.1.11 GeoCoords

struct GeoCoords {
double lat, lon; // degrees
};

typedef sequence<GeoCoords> GeoCoordsList;

Each GeoCoords structure represents a single geographic location. The
coordinates are indicated in floating point degrees of latitude (lat) and
longitude (lon). The associated datum could be established as a parameter
value.

3.1.1.12 Image Location Specification

12

enum ImageLocationKind {PathKind, HyperlinkKind,
AddressKind};

struct PathInfo {
string user_name;
string pass_word;
string host_name;
string path_name;
string file_name;
};

union ImageLocationSpec switch (ImageLocationKind) {
case PathKind:
 PathInfo path;
case HyperlinkKind:
 string hyperlink;
case AddressKind:
 any address;
};

This ImageLocationKind structure is supplied by IAS clients as the
values of the LocationSpec. The LocationSpec is used to indicate the source or
destination of a whole image product transfer.

There are multiple variants. A PathKind variant designates a complete
pathname within account information. This variant is suitable for use for non-
anonymous FTP transfers.

The HyperlinkKind variant is a resource indicator, as commonly used on
the Internet for anonymous transfers. The AddressKind is an additional
variant for extensions or implementation-specific uses.

3.1.1.13 Region Parameters

struct RegionParameters {
unsigned long horizontal_size;
unsigned long vertical_size;
unsigned long resolution_level;
};

The RegionParameters data type is used with the set_parameters and
get_parameters operation. The RegionParameters affects the processing of the
get_region operation of ArrayRequest interface. They are defined here
because they are imagery-specific.

The region parameters are used to establish some conventions for use of
the ArrayRequest interface, that apply to subsequent operations until modified
by another call to set_parameters. The use of the horizontal_size,

13

vertical_size, and resolution_level indicate the size of the region in pixels and
the resolution level. The affect of the set_parameters operation is that it
establishes some state information in the ArrayRequest server implementation
that is used for subsequent requests to the get_region operations. The
set_parameters operation is invoked on a particular Image Access server, since
the IA interface inherits from ArrayRequest and therefore is an ArrayRequest
object.

3.1.1.14 Display and Tile Region Specifications

struct DisplayRegionSpec {
unsigned long x_region_center;
unsigned long y_region_center;
};

The DisplayRegionSpec structure is supplied as the contents of the
RegionSpec for the get_region operation. It is also used in the RegionData
return value.

The coordinates of the region within the source image are defined by x
and y region centers, which are the pixel coordinates in source image space
(regardless of the current RRDS level being retrieved).

struct TileRegionSpec {
unsigned long x_region_center;
unsigned long y_region_center;
unsigned long horizontal_size;
unsigned long vertical_size;
unsigned long resolution_level;
};

The TileRegionSpec structure is supplied as each RegionSpec of the
RegionSpecList for the get_multiple_regions operation. It is also returned in
the RegionData return value from get_multiple_regions.

The coordinates of the region within the source image are defined by x
and y region centers, which are the pixel coordinates in source image space.
The horizontal_size and vertical_size members define the size of the retrieved
region. The resolution_level member selects the RRDS level for retrieval of
this region.

3.1.1.15 QueryId And QueryResults

typedef string QueryId;
 typedef sequence<string> AttributeValues;
 struct QueryHit {

14

ImageProduct product_r ef;
AttributeValues attributes;
RegionData browse_image;
};

 typedef sequence<QueryHit> QueryHitList;
 struct QueryResults {

NameList attribute_names;
QueryHitList query_hits;
};

The QueryId is a unique identifier that is used for subsequent retrieval of
additional or updated query results. A QueryId remains valid only during the
CA server session where the query was submitted, where a CA server session
is defined as beginning with the operation “open” and ending with the
operation “close”.

The QueryResults type is used for return values generated from catalog
queries.

Using this definition, query results are returned in aggregate as type
QueryResults. Each individual query result is type QueryHit. The query
results are self-identifying since they include a NameList containing the
attribute names in the order returned.

Each QueryHit includes a product reference, an optional browse image,
and an attribute list. The browse image is a reduced resolution overview (or
thumbnail) image.

Attribute values are returned as a sequence of strings. The result values
are returned in their character-based forms. This applies for all attribute types,
numeric (N), alphanumeric (A), and mixed (A/N). Each will be returned as a
string of the appropriate length.

The product reference is always returned with each query hit. A browse
image is optionally returned if specifically requested by setting the appropriate
parameter through the parameters interface. The product request and browse
image have their own member values in the QueryHit structure. The other
attributes are returned in the requested order in the AttributeValues member.

3.1.1.16 QueryStatus

struct QueryStatus {
QueryId query_id;
boolean new_results;
};

sequence sequence<QueryStatus> QueryStatusList;

15

The structure QueryStatus is contains a QueryId to identify the query and
a boolean which indicates whether or not that query has any new results.

3.1.2 Exception Information

#define ExceptionInfo any exception_info;

The ExceptionInfo symbol is used in all the exception definitions in the
facility to give these exceptions a consistent set of return values. This is a
generic type ‘any’ that is intended to be specialized for specific applications.

In these facilities, user exceptions are defined for all cases of bad input
parameters, as well as error conditions which are unique to particular
operations.

There is also a set of standard exceptions defined which cover most
generic error conditions, such as communication failure (COMM_FAILURE)
and lack of permission (NO_PERMISSION). The standard exceptions are
listed in Appendix D.

3.1.2.1 Exceptions

exception BadProductReference { ExceptionInfo };
exception BadLocationSpec { ExceptionInfo };

These exceptions are returned by operations that use product references
and locations as input parameters. When returned, these exceptions indicate
that the corresponding arguments were invalid. Additional explanations may
be contained in the ExceptionInfo.

exception TooManyRequ ests { ExceptionInfo };

Some server implementations may have limitations on the number of
outstanding requests. This exception is an error return indicating that this
implementation limit has been exceeded.

exception ProductUnavailable { ExceptionInfo };

This exception indicates that the server is temporarily unable to provide
array operations on the product requested. This condition might occur if for
instance the product was in off-line storage.

exception BadName { ExceptionInfo };
exception Ba dValue { ExceptionInfo };

16

The BadName exception is returned when a name argument is invalid.
The BadValue exception is returned when an invalid value argument is
detected.

exception ResponseServiceNotAvailable { ExceptionInfo };

If a particular quality of service is not available from the server
implementation, it may raise the ResponseServiceNotAvailable exception. If a
server only implements a single quality of service, it is defined to be the
IMMEDIATE mode.

exception BadRequestId { ExceptionIn fo };

The BadRequestId exception is returned if there is an invalid request
identifier.

exception BadCreationAttributes { ExceptionInfo };

The BadCreationAttributes exception is returned if any of the creation
attributes are invalid. (i.e. have an unknown name, have an invalid value for a
known name). This exception is also raised if an attribute occurs in both the
creation_attribute NameValueList and in the source data.

exception BadRegionData { ExceptionInfo };
exception BadRegionSpec { Excepti onInfo };

The BadRegionSpec exception is returned if the region specification is
invalid i.e. the region requested does not lie within the image.

An exception, BadRegionData is returned if the data is unavailable in the
appropriate compression, data format or resolution. The ArrayNotOpen
exception is returned if the image product has not been previously opened by
this client

exception ArrayNotOpen { ExceptionInfo };

The ArrayNotOpen exception is returned if the product has not been
previously opened by this client.

exception AlreadyConnected { ExceptionInfo };

This exception is returned when an attempt is made to reconnect to an
already connected server.

exception BadOpenCriteria { ExceptionInfo };

17

This exception indicates that the connection is denied because the
specified criteria is unacceptable.

exception NoConnectionEstablished { ExceptionInfo };

The NoConnectionEstablished exception is returned when there has been
no previous successful open operation on this server by this client.

exception CannotSet { ExceptionInfo };

The CannotSet exception is returned if one or more parameters identified
in the NameValueList argument are not resettable.

exception BadCoord { ExceptionInfo };

A BadCoord exception indicates that one or more of the coordinates
provided are unacceptable by the implementation. The implementation will
attempt to provide tile coverage for the bounding box, but may return partial
coverage if full coverage is not available. For example, if no coverage of the
bounding box is available from this image, then it is appropriate to return the
BadCoord exception.

exception BadQuerySyntax { ExceptionInfo };
exception BadAttribute { ExceptionInfo };
exception BadQueryValue { ExceptionInfo };
exception BadEllipse { ExceptionInfo };
exception BadQueryId { ExceptionInfo };

These exceptions are returned by the CAF operations. A
BadQuerySyntax exception indicates that the query was improperly formed
according to the rules defined in Section 6. A BadAttribute exception
indicates that one or more of the attributes used in the query are inappropriate
or unknown. A BadQueryValue exception indicates that a literal-constant
value used in the query expression was inappropriate. A BadEllipse exception
indicates that the axes or azimuth are inappropriate. A BadQueryId exception
is returned if a QueryId is invalid.
In addition to the above semantics, the ExceptionInfo may return
supplementary information which provides further indications of the problem
causing the exception.

exception TooFewVertices { ExceptionInfo };
exception TooManyVertices { ExceptionInfo };

The polygon must have no less than 3 vertices otherwise the
TooFewVertices exception will be returned. The maximum number of
vertices is implementation specific. If this value is exceeded, the
TooManyVertices exception is returned.

18

exception BadEmailAddress {ExceptionInfo};

The BadEmailAddress exception would be raised if an invalid email
address is supplied

3.2 The Interfaces

3.2.1 Server Interface

interface Server {

The Server interface is an abstract interface that contains some common
operations which are supported by all IAS servers, such as establishing and
terminating client connections.

3.2.1.1 Open Operation

void open(in NameValueList open_criteria)
raises (AlreadyConnected , BadOpenCriteria)
context(“ContextInfo”);

The open operation must be invoked before any other operations are
invoked on that server in order to establish a connection between the client and
server. The connection establishes some client-specific state information in
the server, such as the resettable parameters.

The argument includes a flexible list of arguments represented as a
NameValueList type. This list contains any information required by the server
to identify and authorize access. These values must be known and acceptable
to the server before a connection is granted. Successful return indicates that
the connection was granted; otherwise an exception is returned.

The AlreadyConnected exception is returned by the server when there is
already an established connection by the requesting client. The
BadOpenCriteria exception is returned when the open criteria is not accepted
by the server. The standard exception NO_PERMISSION is returned if the
client does not have sufficient permissions to access the server.

3.2.1.2 Close Operation

void close()

19

raises (NoConnectionEstablished)
context(“ContextInfo”);

The close operation is invoked after the completion of other invocations
to a server interface. The client must reconnect (using the open operation)
before it can successfully invoke other operations.

The NoConnectionEstablished exception is returned when there has been
no previous successful open operation on this server by this client.

3.2.2 Parameters Interface

interface Parameters {

The Parameters interface contains definitions which provide access to
parameter information directly associated with an object or a particular client’s
interaction with an object. Client-specific resettable parameters establish state
information in the server which affects subsequent requests.

3.2.2.1 Get Parameters Operation

void get_parameters(
in NameList names_of_parameters_requested,
out NameValueList parameter_values)

raises(BadName)
context(“ContextInfo”);

The get parameters operation allows the retrieval of attributes which are
directly stored or closely associated with an object, for example an
ImageProduct or a particular IAS server object.

The NameList argument identifies the parameter names to be retrieved as
output arguments to this invocation. Each name in this list identifies one
parameter. The NameValueList output parameter will contain the values of
the parameters. Each element in this list contains the parameter name and its
corresponding value. The parameters requested may be returned in the
NameValueList in an arbitrary order.

The BadName exception is returned if one or more names in the
NameList argument are invalid. Further details on which name(s) were invalid
should be returned in ExceptionInfo.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

20

3.2.2.2 Set Parameters Operation

 void set_parameters(
in NameValueList parameter_values)

raises(BadName, BadValue,CannotSet)
context(“ContextInfo”);

The set_parameters operation modifies the value of client-specific
resettable parameters which are used to affect subsequent invocations of other
operations. The object implementation can substitute default values if the
parameters are not initialized by the client. The NameValueList parameter is a
list of parameter names and their corresponding values.

The BadName exception is returned if one or more names in the
NameValueList argument are invalid (for example, they do not correspond to
known parameters). Further details on which name(s) were invalid should be
returned in ExceptionInfo. The BadValue exception is returned if one or more
values in the NameValueList argument are not acceptable by the object
implementation (either because they are the wrong type or exceed acceptable
value ranges). The CannotSet exception is returned if one or more parameters
identified in the NameValueList argument are not resettable.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

There are some parameters which are explicitly defined in this IAS
specification. These parameters are common across all implementations of
IAS. The predefined parameters are required to be supported by
implementations of the appropriate interface. Other parameters may be for
specific implementations.

There are two types of parameters: read-only and resettable. The read-
only parameters are not client-specific (Table 4-2). This distinction simplifies
server implementations because the client-specific resettable parameters only
apply to Image Library and Image Catalog (Table 4-1). The resettable
parameters are managed on a per-client basis by the server implementations.
These parameters embody client-specific state information which affect the
processing of operations.

For example, the GeographicDatum parameter establishes the datum in
use for a client data set. The server (library or catalog) would interpret
geographic information from the client using this datum. The server would
also convert output values to this datum. The client can change the datum
selectively between operations, if different datum or data sets are in use.

21

Object Type Parameter Name Value Data Type
CA ResultAttributes NameList
CA BrowseImageReturned boolean
CA GeographicDatum string
IA ProductRRDS unsigned long
IA RegionParameters RegionParameters
IA GeographicDatum string
IA ProductCompression string
IA ProductDataFormat string

Table 4-1 Resettable common parameters on Image Library and Image
Catalog

Table 4-1 is a list of the resettable parameters maintained by Image
Access and Catalog Access servers for each client connection.

The ResultAttributes parameter contains a list of the attributes which are
returned from catalog queries.

The BrowseImageReturned parameter is used to indicate that the client
wishes a browse image (thumbnail) to be returned with the results of each
catalog query. A client should set this parameter to TRUE to have thumbnails
returned with query results.

The GeographicDatum Parameter contains the datum to be used for client
coordinates. Separate GeographicDatum parameters exist for both Catalog
Access and Image Access interfaces, since these may be separate
implementations with separate client connections.

The ProductRRDS parameter establishes the requested reduced resolution
data sets to be returned by whole product requests and subimage requests. The
data sets to be returned will be as prespecified by the client in the query or
interest profile. Resolution 0 corresponds to the source image.

The RegionParameters are array region retrieval parameters which affect
subsequent retrievals.

The ProductCompression parameter establishes the compression format
required by the client.

The ProductDataFormat parameter establishes the image product data
format required by the client.

22

Object Type Parameter Name Value Data Type
ImageProduct SupportData sequence<octet>
CA InterfacesSupported NameValueList
CA AvailableAttributes NameList
CA QueryableAttributes NameValueList
CA MaxPolygonVertices unsigned long
IA InterfacesSupported NameValueList
ImageProduct ReferenceAttributes NameValueList
ImageProduct ArrayProduct boolean
ImageProduct LibraryReference IA
Child of Parameters ParameterNames NameValueList

Table 4-2 Read-only common parameters containing specialized metadata

Table 4-2 identifies the read-only parameters. These parameters contain
metadata information that is specifically associated with instances of each of
the object types.

The SupportData parameter contains a block of support data information
associated with an ImageProduct.

Both Image Access and Catalog Access interfaces support the Parameters
interface and in particular the "InterfacesSupported" parameter. This
parameter contains a list of the IAS interfaces which are supported by this or
related implementations. The value fields include the object reference of the
supporting or associated implementations.

The AvailableAttributes parameter is a complete listing of the catalog
attributes that are available in responses to catalog queries.

The QueryableAttributes parameter is a listing of the queryable attributes
supported by this catalog implementation. In the value field, each queryable
attribute indicates the supported query language operations (Section 6.5). Each
queryable attribute will be returned as the name in the NameValueList. The
corresponding value in the NameValueList will be a string containing the set
of operators that can be used with that attribute. The list of all possible
operators is defined in section 5.3.

The MaxPolygonVertices parameter indicates the maximum number of
vertices accepted by the catalog implementation for the polygonal_query
operation.

The ReferenceAttributes parameter contains some key attributes that are
accessible from all ImageProduct references. This has a data type
NameValueList.

23

The ArrayProduct parameter indicates if a particular image product is
accessible as an image array. This boolean parameter value is TRUE if the
image product can be accessed through the ArrayRequest interface.

The LibraryReference parameter denotes the library location for the
image product. The product may be retrieved by a request on this library.

The last row applies to all objects inheriting the Parameters interface (IA,
CA, PN and ImageProduct). All implementations of these interfaces will have
a parameter called "ParameterNames" which enables discovery of the
available parameters supported by that implementation. The representation is a
NameValueList data type. The name field of each NameValue struct represent
the parameter name. The value field of each NameValue struct is a boolean
that indicates whether the parameter is resettable i.e. TRUE means parameter
is resettable.

3.2.3 Product interface

interface Product {};

This is an opaque reference to any kind of information product as
described in Section 2.5.1. It has no predefined operations on its interface.

The product reference is intended to be specialized and extended.

3.2.4 Image Product Interface

interface ImageProduct: Product, Parameters {};

An IDL interface is used to declare the object reference type for image
products. This is a specialization of the generic reference defined for Product.
This adds the operations for parameter management, so that some attributes
specifically associated with these objects can be retrieved without going to the
catalog.

An ImageProduct reference corresponds to a whole product which may
be retrieved and created using the ProductRequest interface with Image
Access specializations.

3.2.5 IA Interface

interface IA: Server, Parameters {

24

3.2.5.1 Disseminate Operation

RequestIdList disseminate(
in Product product_to_disseminate,
in LocationSpecList destinations,
in ResponseService service)
raises (BadProductReference, BadLocationSpec,

ResponseServiceNotAvailable, TooManyRequests)
context(“ContextInfo”);

The disseminate operation requests the initiation of the transfer of a
whole product. The Product argument is a reference to the particular product
to transfer. The LocationSpecList argument is a list of destinations for the
product. This list may include destinations for the requesting client as well as
third-party clients; thus this operation supports a form of push-mode transfer
through a third-party request. The ResponseService is a quality of service
specification as described above. The return value, a RequestIdList, provides
a unique identifier (from the server) for each of the listed destinations.
RequestIds are used for tracking the progress of the request using the
completion checking operation. The ProductRequest implementation returns
the thread of control to the client as soon as possible after this request is
invoked in order to process this operation in the background.

The disseminate operation will return the BadProductReference
exception if the product is not present or the reference is invalid. The
BadLocationSpec exception is returned when one or more locations are
invalid. (Note: Prescreening of LocationSpecs is not required by the Image
Access Facility specialization of this operation).

The ResponseServiceNotAvailable exception is returned if the server
does not support the requested quality of service. The TooManyRequests
exception is returned if the server’s implementation limit is exceeded for the
number of outstanding requests.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

3.2.5.2 Completion Checking Operation

CompletionState check_completion(
in RequestId request_identifier,
out string state_info rmation)

25

raises (BadRequestId)
context(“ContextInfo”);

The completion checking operation enables clients to check the status of
a request. The request is uniquely identified by the request identifier
argument. A CompletionState enumeration argument is returned indicating the
completion status. Any additional explanation is contained in the
state_information argument.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

3.2.5.3 Cancel Operation

CompletionState cancel(
in RequestId request_identifier)
raises (BadRequestId)
context(“ContextInfo”);

The cancel operation enables clients to terminate an outstanding request
initiated by other operations, such as disseminate and create. The request
identifier argument uniquely identifies the request concerned. A
CompletionState is returned with information about the status of the request.
The semantics of the CompletionState are: if the request identified by
request_identifier was successfully canceled or had already completed the
CompletionState should be COMPLETED. If the attempt to cancel fails for
any reason, the CompletionState should be ABORTED.

The operation may return a BadRequestId exception if the RequestId
argument is invalid.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

3.2.5.4 Create Operation

ImageProduct create(
in LocationSpec initial_product_data,
in NameValueList creation_attributes,
out RequestId request_id)
raises (BadCreationAttributes, BadLocationSpec,
TooManyRequests)
context(“ContextInfo”);

26

The create operation submits a new product for storage in the library. (A
likely side effect of this operation will be for the library to update its
associated catalog to include this new product). The operation generates a new
product reference as its return value. The source data for the new product is
indicated by the LocationSpec argument. The RequestId allows the tracking
of the request through the completion checking operation.

The creation_attributes argument is a NameValueList which contains any
information in addition to that which is contained in the source data.

A RequestId is returned as an output parameter. The RequestId can be
used to check completion or cancel the request. The new product reference
should not be used until the request has completed. Otherwise an exception,
such as the standard exception OBJECT_NOT_EXIST, may be returned.

The BadLocationSpec exception is returned if the LocationSpec
argument is invalid. The TooManyRequests exception is returned if the
request exceeds the number of outstanding requests the server can support.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

To create a new product, the client must be able to specify the new
product in a file format which includes all appropriate metadata or specify
metadata separately in the create request (using the NameValueList argument).
This assures that all needed metadata is provided to the library server to allow
creation of the new product and incorporation of applicable metadata in the
library catalog. This will allow subsequent image product discovery and
retrieval.

 When the create operation is called, it issues a unique product reference
that is only initially known to the requesting client. The client should verify
completion of the creation request using the completion checking operation
before utilizing the product reference.

3.2.5.5 Get Subimage Operation

RequestId get_subimage(
in ImageProduct image_array_product,
in GeoCoords upper_left,
in GeoCoords lower_right,

27

in LocationSpec location)
raises (BadProductReference, BadCoord,

BadLocationSpec, TooManyRequests, BadRegionData)
context(“ContextInfo”);

The get subimage operation causes the generation of a subimage and
stores it in a specified location. The retrieved subimage will provide coverage
of the bounding box specified by the geographic coordinates. The subimage
has the form of a whole image product; although it is not required to be
cataloged.

The server implementation returns the thread of control to the client as
soon as possible after this request in order to process this operation in the
background.

The subimage will be returned with the appropriate file format,
compression, and RRDS levels as indicated by the appropriate parameters.

The image_array_product argument indicates the source image product
from which the subimage will be created. The upper_left and lower_right
arguments define a bounding-box geographic area (oriented to image
boundaries). The upper_left argument is the North West corner of this area.
The lower_right corner is the South East corner of this area. The
LocationSpec argument defines the destination for the subimage. The server
will transfer the resulting subimage to this location in response to this request.
The RequestId return argument is a unique indicator for this request which can
be used to monitor completion or cancel the request.

The BadProductReference exception is returned if the product reference
is invalid. If the LocationSpec is invalid the server may return the
BadLocationSpec exception. The checking of the LocationSpec argument by
the implementation is not required for IAF implementations. The
TooManyRequests exception is returned if the request exceeds the number of
outstanding requests the server can support. The exception BadRegionData is
returned if the data is unavailable in the appropriate compression or data
format.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

3.2.5.6 Open Array Operation

void open_array(in ImageProduct product, in any
access_kind)

28

raises (BadProductReference, ProductUn available)
context(“ContextInfo”);

The operation initiates access to an ImageProduct object for purpose of
retrieving arrays. The product argument identifies the product to be opened.
A call to open_array is required for a product before other operations using the
ImageProduct reference are invoked. Note that is method is in addition to the
open method on the server. To access an array, the client must first open the
server in which the array resides and then open the array itself.

The AccessKind argument is application defined, and may, for example
indicate if the array is writable. A reserved value of this argument contains a
nil pointer for the value field of the type any. This reserved value can be used
safely by clients without conflicting with application defined values.

A BadProductReference exception will be returned if the product
reference is invalid. The exception ProductUnavailable is returned if the server
is temporarily unable to open the array due to internal server state (i.e.
product is in off-line storage). The standard exception BAD_INV_ORDER
(routine invocations out of order) will be returned if the server has not been
successfully opened prior to this method being used.

3.2.5.7 Close Array Operation

void close_array(in ImageProduct product)
raises (BadProductReference,ArrayNotOpen)
context(“ContextInfo”);

The close operation indicates that the client has completed array access to
a product. The operation close_array is the converse of the operation
open_array. The operation close_array is executed after open_array and any
other
ArrayRequest operations using the ImageProduct reference.

The product argument indicates the product to be closed. The operation
may return the BadProductReference exception if the array product reference
argument is invalid. The ArrayNotOpen exception is returned if the product
has not been previously opened by this client. The standard exception
BAD_INV_ORDER (routine invocations out of order) will be returned if the
server has not been successfully opened prior to this method being used.

3.2.5.8 Get Region Operation

void get_region(
in ImageProduct product,

29

in RegionSpec region_spec,
 out RegionData region_data)

raises(BadProductReference, BadRegionSpec,
BadRegionData, ArrayNotOpen)

context(“ContextInfo”);

This operation can be used to retrieve element (or pixel) data from a
product. The product argument is the product of interest. The RegionSpec
argument identifies the region within the product. The get region operation has
an out argument, which is a region data structure. This returned RegionData
structure contains the image pixels and self-descriptive information.

If the requested region lies only partially within the image, the portions of
the region lying outside of the bounds of the available image will be filled
with an appropriate data value to fill the requested tile size.

The BadProductReference exception is returned if the product reference
is invalid. The BadRegionSpec exception is returned if the region
specification is invalid i.e. the region requested does not lie within the image.

An exception, BadRegionData is returned if the data is unavailable in the
appropriate compression, data format or resolution. The ArrayNotOpen
exception is returned if the image product has not been previously opened by
this client.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

3.2.5.9 Get Multiple Regions Operation

void get_multiple_regions(
in ImageProduct product,
in RegionSpecList region_specs,
out RegionDataList region_data_list)
raises(BadProductReference, BadRegionSpec,

 BadRegionData, ArrayNotOpen)
context(“ContextInfo”);

This operation retrieves one or more array regions to memory areas
indicated by the RegionDataList. For example, this operation may be used to
retrieve multiple image tiles, each specified as a separate region.

The product argument identifies the source for region retrieval. The
RegionSpecList argument contains the requested specifications for each of the

30

retrieved regions. The RegionDataList defines a list of RegionData structures
where the region data will be returned.

The BadProductReference exception is returned if the product reference
argument is invalid. The BadRegionSpec exception is returned if one or more
RegionSpecs in the RegionSpecList argument are invalid. The
BadRegionData exception is returned if the data is unavailable in the
appropriate compression or data format. The ArrayNotOpen exception is
returned if the array product has not been previously opened by this client.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

3.2.6 CA Interface

 interface CA: Server, Parameters {

This interface contains all of the imagery-specific operations for image
catalog access, including Boolean and geographic queries.

3.2.6.1 Boolean Query Operation

QueryId boolean_query(
in string boolean_query_expression)

raises (BadQuerySyntax, BadAttribute,
 BadQueryValue, TooManyRequests)

context(“ContextInfo”);

This is an ordinary catalog search query. It takes a Boolean Query
Syntax (BQS) expression as input and returns a QueryId. Successful
completion of this operation indicates that the submitted query was
syntactically correct and was accepted for processing. The QueryId returned
can be used with the get_results operation to retrieve the results.

The BadQuerySyntax exception is returned if the BQS query has illegal
syntax (Section 6.3). This exception can also result if an improper operation is
applied to a queryable attribute (Section 6.5). The BadAttribute exception is
returned if the query expression contains an unknown or non-queryable
attribute. The BadQueryValue exception is returned if a the query expression
contains an invalid literal-constant value. A TooManyRequests exception is
returned if the server has exceeded an implementation limit for the number of
simultaneous queries.

31

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

3.2.6.2 Polygonal Query Operation

QueryId polygonal_query(
in string boolean_query_expression,
in GeoCoordsList polygon_vertices
)

raises (BadQuerySyntax, BadAttribute,
BadQueryValue, BadCoord,
TooFewVertices, TooManyVertices,

TooManyRequ ests)
context(“ContextInfo”);

A Boolean query is supplemented by the specification of a polygonal
shape. The CAF implementation will include products that overlap this
polygonal shape and match the BQS expression. In other words, image
products which overlap any portion of the polygon will match the query, as
long as, the product attributes also satisfy the Boolean query expression.

The first argument is the Boolean query expression in BQS syntax. The
second argument defines the polygon as a list of polygon vertices.

The polygon vertices must define a single closed area. The order of the
vertices in the polygon_vertices argument define a counterclockwise traversal
of the edges of the polygon. This establishes a convention for determining the
interior of the polygon. Successful completion of this operation indicates that
the submitted query was syntactically correct and was accepted for processing.
The QueryId returned can be used with the get_results operation to retrieve the
results.

The BadQuerySyntax exception is returned if the BQS query has illegal
syntax (Section 6.3). This exception can also result if an improper operation is
applied to a queryable attribute (Section 6.5). The BadAttribute exception is
returned if the query expression contains an unknown or non-queryable
attribute. The BadQueryValue exception is returned if a the query expression
contains an invalid literal-constant value.

The BadCoord exception is returned when one or more of the coordinates
is invalid. For example, this exception will result if the vertices define a shape
with multiple closed areas. A TooManyRequests exception is returned if the

32

server has exceeded an implementation limit for the number of simultaneous
queries.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

3.2.6.3 Elliptical Query Operation

QueryId elliptical_query(
in string boolean_query_expression,
in GeoCoords ellipse_cent er,
in double major_axis, // meters
in double minor_axis, // meters
in double azimuth // decimal degrees from North
)

raises (BadQuerySyntax, BadAttribute,
BadQueryValue, BadCoord, BadEllipse,
 TooManyRequests)

context(“ContextInfo”);

A Boolean query is supplemented by the specification of an elliptical
shape. The query results will include products which provide coverage of any
portion of the ellipse and satisfy the BQS expression. The ellipse is defined by
its center point, major and minor axes, and the azimuth clockwise rotation
from North of the major axis. Circle queries use this same API by using
identical major and minor axes.

The first argument is the BQS expression. The second argument defines
the center point of the ellipse. The third argument is the length of the major
axis of the ellipse, in meters. The fourth argument defines the minor axis of
the ellipse, in meters. The fifth argument, azimuth, indicates the rotation of
the ellipse.

Successful completion of this operation indicates that the submitted query
was syntactically correct and was accepted for processing. The QueryId
returned can be used with the get_results operation to retrieve the results.

The BadQuerySyntax exception is returned if the BQS query has illegal
syntax (Section 6.3). This exception can also result if an improper operation is
applied to a queryable attribute (Section 6.5). The BadAttribute exception is
returned if the query expression contains an unknown or non-queryable
attribute. The BadQueryValue exception is returned if the query expression
contains an invalid literal-constant value.

33

The BadCoord expression is returned if the coordinates of the center
point are invalid. For example, this exception would be returned if latitude is
greater than 90 degrees or less than -90 degrees.

The BadEllipse expression is returned if the axes or azimuth arguments
are invalid. A TooManyRequests exception is returned if the server has
exceeded an implementation limit for the number of simultaneous queries.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

3.2.6.4 Point Query Operation

QueryId point_query(
in string boolean_query_expression,
in GeoCoords point_geo_location
)

raises (BadQuerySyntax, BadAttribute,
BadQueryValue, BadCoord, TooManyRequests)

context(“ContextInfo”);

A Boolean query is supplemented by the specification of a geographic
point. Image products will be returned that match this query, i.e., those that
satisfy the BQS expression and also provide coverage of this point.

The first argument is the BQS expression. The second argument defines
the location of the geographic point.

Successful completion of this operation indicates that the submitted query
was syntactically correct and was accepted for processing. The QueryId
returned can be used with the get_results operation to retrieve the results.

The BadQuerySyntax exception is returned if the BQS query has illegal
syntax (Section 6.3). This exception can also result if an improper operation is
applied to a queryable attribute (Section 6.5). The BadAttribute exception is
returned if the query expression contains an unknown or non-queryable
attribute. The BadQueryValue exception is returned if the query expression
contains an invalid literal-constant value.

The BadCoord expression is returned if the coordinates of the geographic
point are invalid. For example, this exception would be returned if latitude is
greater than 90 degrees or less than -90 degrees. A TooManyRequests
exception is returned if the server has exceeded an implementation limit for
the number of simultaneous queries.

34

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

3.2.6.5 Get Results Operation

void get_results(
in QueryId query_result_identifier,
in unsigned long number_hits_to_return,
out Que ryResults product_records)

raises (BadQueryId)
context(“ContextInfo”);

All of the CA query operations return a QueryId for every successfully
submitted query. This QueryId may be used with the get_results operation to
obtain the results of each query.

The operation get_results has an input argument for QueryId for the
desired result set. The second argument indicates how many of the results to
return. The results are returned as the QueryResults out argument. If the
requested number of hits to return exceeds the number of hits remaining, all
remaining hits are returned. This operation may be called as many times as
necessary to retrieve the results. The client can determine that all hits have
been returned when less then the number of hits requested are returned (i.e. 10
hits are requested and 8 are returned)

The BadQueryId exception is returned if the QueryId argument is invalid.
A QueryId remains valid only during the CA server session where the query
was submitted, (where a CA server session is defined as beginning with the
operation “open” and ending with the operation “close”) or until it is free by a
call to free_results.

The standard exception BAD_INV_ORDER (routine invocations out of
order) will be returned if the server has not been successfully opened prior to
this method being used.

3.2.6.6 Free Results Operation

void free_results(
in QueryId query_result_identifier)

raises(BadQueryId)
context(“ContextInfo”);

The free_results operation notifies the catalog server that the client does
not intend to retrieve any additional results for the indicated QueryId. The
catalog server may free any resources allocated to the indicated QueryId,

35

including any remaining results. If the query identified by the QueryId is still
being processed when free_result is called on that QueryId, the server may
cease processing at that point.

If a QueryId is returned from any of the above operations, clients will
either call this operation or the get_results operation until all results are either
retrieved or freed.

The input argument is a QueryId which refers to the specific result set to
be freed.

A BadQueryId exception is returned if the QueryId is invalid. A QueryId
returned by a CAF query operation (boolean_query, polygonal_query,
elliptical_query or point_query) remains valid only during the CA server
session where the query was submitted (a CA server session is defined as
beginning with the operation “open” and ending with the operation “close”.)
or until it is “freed” by the free_ result operation. The standard exception
BAD_INV_ORDER (routine invocations out of order) will be returned if the
server has not been successfully opened prior to this method being used.

3.2.7 PN Interface

This section describes the semantics and sequencing of the PN (Profile &
Notification) interface. The intent of this interface is to allow clients to register
their interests concerning geospatial information and to be notified when
information relevant to their registered interests enters an archive.

The PN interface has a companion interface on the client side the
PNF_Callback interface (See below). The PN interface is defined within the
IAS module and the PNF_Callback interface is defined within the IA_CL
module.

The Profile & Notification interface, PN, defined within the IAS module,
inherits all of the operations from the IAS::CA interface, and defines several
new operations.

The PNF server re-uses the methods inherited from the CAF with
basically identical semantics. The four query methods (boolean_query,
polygonal_query, elliptical_query and point_query) are used to submit
standing queries and the get_results allows result sets from standing queries to
be retrieved. The free_results method differs slightly. In the CAF, queries and
their associated results are considered transitory. Freeing a transitory result
deletes all results. In contrast, in the PNF, queries and results are considered to
be persistent . Freeing the results from a standing query, only deletes those
results that have already been retrieved by the client. This also means that in

36

the PNF, a QueryId returned by submitting a standing query is valid for an
indefinite time. This is different from a QueryId returned from a CAF query,
which is only valid during the session in which it was issued by the server.

interface PN: CA {

// Forward reference to the PNF_Callback interface
interface PNF_Callback;

The PN interface is derived from the CA (Catalog Access) interface. It
also contains a forward reference to its associated PNF_Callback interface.

3.2.7.1 List Queries Operation

void list_queries(out QueryStatusList queries)
context(“ContextInfo”);

The list_queries operation returns a status list of all of the standing
queries. The output argument is a QueryStatusList which contains one
element for each standing query from this client. The query_id member
uniquely identifies each query with respect to the requesting client. The
new_results member indicates if there are new query results to be retrieved.
That is, new_results equal to TRUE indicates that a query has results that have
not been retrieved. For example, if a standing query has 100 results and the
client retrieves 10 (using get_results) the new_results flag should still be set to
TRUE, because 90 hits remain. This also means that repeatedly checking
status (using list_queries) does not change that new_results status. The client
is responsible for maintaining the correlation between the QueryId and the
details of the query (i.e. query parameters, human-readable description of the
query etc.). The standard exception BAD_INV_ORDER (routine invocations
out of order) will be returned if the server has not been successfully opened
prior to this method being used.

3.2.7.2 Remove Query operation

void remove_query(in QueryId query_identifier)
raises(BadQueryId)

context(“ContextInfo”);

The remove_query operation allows the cancellation of a standing query.
The BadQueryId exception is returned from operations if there is no standing
query with the indicated query_id. The standard exception
BAD_INV_ORDER (routine invocations out of order) will be returned if the
server has not been successfully opened prior to this method being used.

37

3.2.7.3 Request Notification Operation

void request_notification (
in QueryId query_identifier,
in IA_CL:PNF_Callback callback_objectref,
in string email_address)

raises(BadQueryId,BadEmailAddress)
context(“ContextInfo”);

The request_notification method indicates that the client wishes to be
automatically notified of new “hits” against a standing query. The client
supplies a QueryId to indicate the standing query of interest. It also supplies an
object reference for a PNF_Callback object for the server to notify. On
receiving hits against this standing query, the PNF server will invoke the
notify method on this object reference. (see PNF_Callback below). The client
can also provide a string containing an email address. On receiving hits against
a standing query, an email message describing those hits will be sent to that
address. Either the object reference or the address parameter may be NULL,
indicating that client does not wish to be notified by that mode, but both
cannot be NULL. (The standard exception BAD_PARAM would be raised if
both are NULL.). The exception BadQueryId is returned if the QueryId is
invalid. The standard exception INV_OBJREF (invalid object reference) is
returned if the client submits an invalid object reference for the
PNF_Callback.

3.2.8 PNF_Callback Interface

The PNF_Callback interface is implemented by any client that wishes to
be automatically notified of standing query hits. Clients that do not implement
this interface cannot use the callback mode of the request_notification method.
They may use the email mode of request_notification.

module IA_CL {

interface PNF_Callback {

The PNF_Callback interface, contained in module IA_CL, defines a
method which a PNF server can invoke to notify the client of “hits” against a
standing query.

3.2.8.1 Notify Operation
void notify(

in IA:QueryId quer y_identifier,
in IA:QueryResults results)

raises (BadQueryId);

38

The notify method is invoked by a PNF server to notify the client that a
standing query has new hits. The server will supply the QueryId of the
standing query in the first parameter query_identifier and pass the details of
the hits in the second parameter results.

39

4. Access Management Interface

4.1 Overview
This interface addresses requirements for client interactions with the

operational and management aspects of geospatial information archives. It is
not intended to replace full archive management or system administration
interfaces. It is intended only to provide the functions that a client (i.e. a user
of geospatial data) uses to make its requirements clear to the archive. These
operations include checking availability of information for a particular purpose
and submitting requests to make information available for a specific, possibly
specialized, purpose.

This interface represents a very simple view of the status of information
within an archive. Each archive supports one or more “use modes” . A use
mode represents a servers ability to provide information for a specific
purpose. For example, a server might be able to supply information in two
ways: by file transfer or by interactively supplying a stream of sub sections.
The intended mode of use (“file transfer” or “interactive”) may determine
whether the server is actually ready to provide the information. Another
possible use for use modes might be to indicate the clients wish that data be
purged or deleted from the archive.

This set of operations provide methods for a client to discover the use
modes of the server, determine if a specific piece of information is available
for a specific use and to request that specific information is made available for
a specific use. These interfaces re-use some basic data type definitions from
the Image Access Services (IAS) Specification Version 1.0. These re-used
definitions are from the IAS module and are preceeded by the scoping label
“IAS”.

4.2 AMS Interface

module AMS {
#define ExceptionInfo any exception_info;
exception UnknownUseMode {ExceptionInfo}
exception BadUseRequest {ExceptionInfo}

All methods for the Access Management interfaces are contained in
module “AMS”. The definition ExceptionInfo provides a consistent parameter
for return by AMS defined exceptions. There are two AMS defined
exceptions: UnknownUseMode which indicates the specification of a use
mode unknown in the context it was submitted and BadUseRequest which

40

indicates that the use mode submitted is inappropriate or disallowed in the
context it was submitted.

4.2.1.1 Use Modes Operation

IAS::NameList use_modes();

The method use_modes returns a list of the different modes of use the
server supports. An example of a use mode might be “FileTransfer”
,“InteractiveRetrieval” or “NoLongerNeeded”. A server which does not
distinguish between modes, by definition, supports the useMode “General”.

4.2.1.2 Check Availability Operation

boolean check_availability(in IAS::Product product, in string
useMode) raises(UnknownUseMode,IAS::BadProductReference);

Check_availability returns a boolean that indicates if Product product is
available for use in mode useMode. (TRUE indicates product is available for
specified use). The exception UnknownUseMode will occur if the client
requests a mode unknown to the server. The exception BadProductReference
will occur if a invalid product reference is used.

4.2.1.3 Request Availability Operation

unsigned long request_availability(in IAS::Product product, in
string useMode)
raises(UnknownUseMode,IAS::BadProductReference, BadUseRequest);

Request_availability requests that Product product be made available for
use useMode. This method returns the estimated time in seconds to
accomplish the change in availability. If the product is already in the requested
level at the time the request is issued, a time of 0 (zero) seconds is returned.
For a server that supports only a single use mode, the request_availability
method may serve as a hint to ready the product for access. The exception
UnknownUseMode will occur if the client requests a useMode unknown to the
server. The exception BadProductReference will occur if an invalid product
reference is used. The exception BadUseRequest will be returned if the
product is inappropriate for use in the requested mode.

41

5. Boolean Query Syntax

5.1 Overview

The Boolean query syntax is a key part of the specification of the Catalog
Access Facility (CAF).

To provide interoperability, this specification defines conventions on
arguments as well as the operation signatures. This section defines a syntax for
dynamic queries, called the Boolean query syntax.

The Boolean query syntax is a notation for expressing queries based directly
upon pre-defined attribute lists.

The query is based on an attribute list instead of a particular schema. This
simplifies the complexity of the client for query generation, and avoids
constraining the design of the schema or schema view in the server
implementation of the CAF.

5.2 Client Paradigm

This approach requires the server to translate the query into the appropriate
schema and query language syntax, for example SQL92. Translated queries can
become quite complex. The server must provide the processing capabilities to do
this versus requiring clients to provide it. This simplifies the client which is the
intent.

The syntax of the Boolean query language is constrained to provide
simplicity of query generation and translation without loss of useful capabilities.
This simplification is accomplished by considering the user interface paradigm
that drives the generation of Boolean queries.

42

Date From:

Date To:

Category:

Country:

CANCEL SUBMIT

Figure 6-1 Example User Interface Query Form

In a user interface query form, as shown in Figure 6-1, there are a number of
named fields which must be supplied by the end-user to generate a query. Each
field implies a simple attribute relation, for example:

ATTRIBUTE > VALUE

This simple relationship is true of most fields, except those which accepted
multiple values (such as the Country field shown above). For example, if the
user fills in both US and UK for Country, indicating a search in both countries,
then the Boolean query would contain an "or" relationship:

(Country like 'US' or Country like 'UK')

In this example, the "like" operator is the equivalence operator for text
expressions, which also supports wildcards (See E.2 below).

The logical relationship between fields can be an "and" relationship. For
example if one specifies both Date From and a Country:

Date > '29-Feb-1996' and Country like 'US'

Taking all of the above into account as our query generation paradigm, one
can constrain the Boolean query syntax to a Boolean product-of-sums, where
most of the sums are just simple attribute relations. When it is not a simple
relation, it is a logical sum expression, based upon the same attribute.

Formally, this can be expressed in the syntax of the Backus-Naur Form
(BNF) specification as defined in Section 6.3 below.

43

5.3 BNF Rules

The Backus-Naur Form (BNF) for the Boolean query syntax is show below.
The following rules use the same BNF conventions as used in the OMG IDL
technical reference. [5]

<Boolean Query> ::= <Product Expression>*

<Product Expression> ::=
<Sum Expression> { "and" <Sum Expression> }*

<Sum Expression> ::= <Relation Expression>
| "(" <Relation Expression> { "or" <Relation Expression> }+ ")"

<Relation Expression> ::=
<Attribute> <Relation Operator> <Constant Expression>

<Relation Operator> ::=
"=" | ">" | "<" | ">=" | "<=" | "<>" | "like" | "not like"

The BNF rules are augmented by the following constraints:
1. Constant expressions include the options defined in SQL92, except

as otherwise noted here.
2. The <Attribute> contained in each relation within a sum

expression are the same attribute. The operators are limited to
"=", "<>", "like", and "not like" within sum expressions.

3. Wildcard expressions are allowed using the character "%" to
denote a match with 0 or more characters.

For example:
attribute like 'target%'

would match the following strings:
'target' "target9' 'target123'

 The "like" and "not like" operators are the only operators used for text
expressions and the only operators supporting wildcards.

Wildcards can be used to implement the effect of many character matching
operations, such as: contains, begins with, ends with, not contains, not begins
with, not ends with, and so forth.

For example:
attribute like '%contains_this%'

 attribute like 'begins_with_this%'
 attribute like '%ends_with_this'

44

 attribut e not like '%will_not_contain_this%'
 attribute not like
'will_not_begin_with_this%'

 attribute not like '%will_not_end_with_this’

5.4 BNF Semantics

A Boolean Query is the starting token of the BNF definition of the query
language. In other words, all allowable queries are generated from a Boolean
Query.

A Product Expression is a logical sum of products, i.e. a series of
expressions that are ANDed together.

A Sum Expression is either a simple attribute relation or a series of simple
relations ORed together. One can always detect the second case, because a
parenthesis "(" occurs first.

A Relation Expression is a simple relationship between a particular attribute
and a constant value. Constant values may be integers, floating point, strings,
including the options allowed in the SQL92 standard.

5.5 Attribute Metadata

Interoperability will be limited if clients generate queries that require
excessive processing. Therefore each implementation may identify specific
attributes as queryable. In addition, the implementation may also define the
allowable relation operators and if wildcards are allowed, as well as other
characteristics.

This metadata information could be available as a set of parameters,
retrievable through the Parameters interface.

45

6. Bibliography
1. USIS Standards and Guidelines -- USIS Standards, Guidelines, and

Conventions, Section 4, Central Imagery Office, Vienna, VA, May 1995.

2. National Imagery Transmission Format (NITF), Version 2.0, U.S. DoD
MIL-STD 2500A.

3. Interface Control Document for IPA 1.0 , GTE Government Systems
Corporation, Document Number 1947004D, February1995.

4. System III Application Programmers Interface , CDR1 Update, Document
Number 60770-6043-SX-00, July 1994.

5. CORBA: The Common Object Request Broker Architecture and
Specification, Revision 2.0, Object Management Group, Framingham,
MA, OMG Document Number 93.12.43, December 1993.

6. CARS Mission Intelligence Segment: Trusted Image Storage Manager
(Briefing), Loral Western Development Laboratories, San Jose, CA, June
1995.

7. Mowbray, T.J., and Zahavi, R., The Essential CORBA: System Integration
Using Distributed Objects, John Wiley & Sons, New York1995.

8. DISCUS Programmer's Reference Manual, Developer's Guide, and
Release Notes, The MITRE Corporation, McLean, VA, May 1995.

9. ImNet with CORBA Extensions (Briefing), The MITRE Corporation in
cooperation with TASC, McLean, VA, June 1995.

10. USIS Image Access Business Object Modeling (Briefing), USIS
 Architecture Team, Vienna, VA, June 1995.

11. USIS Image Access Standards Analysis (Briefing), USIS
 Architecture Team, Vienna, VA, May 1995.

12. Addendum: Summary of Migration Systems Analysis, USIS
 Architecture Team, Vienna, VA, June 1995.

13. United States Imagery System Master Glossary , Version 2, Central
 Imagery Office, Vienna, VA, August 1994.

14. CORBAfacilities: The Common Facilities Architecture, Version 4.0,
 Object Management Group, Framingham, MA, November 1995.

46

15. CORBAservices: Common Object Services Specification, Revised
 Edition, Object Management Group, Framingham, MA, March 1995.

16. Object Query Service Specification: Joint Submission, Document
 95.1.1, Object Management Group, Framingham, MA, January 1995.

17. Common Imagery Interoperability Facilities, Central Imagery
 Office, Vienna, VA, March 1996.

18. United States Imagery System: Standards Profile for Image Archives,
 Document ASD SIA 05940000, Central Imagery Office, Vienna,
 VA, July 1994.

19. International Standards Organization, Image Processing and Interchange:
Programmer's Imaging Kernel (IPI-PIKS), ISO/IEC IS 12087-1:1993.

20. Joint Requirements Document for the USIS 2000 Accelerated
Architecture Acquisition Initiative (A3I), Central Imagery Office and the
IMINT Directorate, Version 1.0, December 1996.

21. Common Imagery Interoperability Profile for Imagery Access,
 Central Imagery Office, Draft, Vienna, VA, 20 December 1996.

22. Accelerated Architecture Acquisition Initiative (A3I) Requirements
 Document, Rev. 1.0, CIO-2054.

23. Joint Requirements Document for the USIS 2000 Accelerated
 Architecture Acquisition Initiative (A3I), Central Imagery Office
 and Rome Labs, Version 1.0, June 1996.

47

7. Glossary

This glossary contains a useful set of definitions for unique concepts in
the Image Access Services Specification. Other standard terminology is
defined in the USIS Master Glossary [13]. The terms defined in this
glossary take precedence over other terminology definitions with respect to
the contents of this specification.

Application Program Interface (API) - A high level language software
interface, supporting high-level languages such as C, C++, Ada95, and
others. This expands upon the definition in the USIS Master Glossary [13].

Array- An Array is an image product that stores pixels or other array data
(such as digital video or audio). Parts of arrays can be retrieved using the
ArrayRequest interface of the Image Access Facility.

Client - Any application software that accesses the image access services.
This includes applications that search for image products, obtain image
product attributes, and retrieves items from image libraries.

IDL Interface - A language independent API. IDL is defined in the
CORBA standard [5] but can also be used independent of commercial
object request brokers (ORB) to define APIs. The layered library system
model shown in Figure G-1 shows the relationship between the IDL
interface and the socket-level ICD interfaces.

Archive
Database

COTS &
Custom

S
er

ve
r

Is
o

la
ti

o
n

 L
ay

er

Socket
Interface

Interface
Control

Document
Wire

Protocol

Socket
Interface

Client
Interface
Library

Network
Interface
IsolationID

L
 In

te
rf

ac
e

Client
Software

Server
Interface
Library

Network
Interface
Isolation

Figure G-1 Interface layers within a typical legacy system

Image Processing and Interchange (IPI) - An international standard that
defines image processing terminology, image processing operations, and
interoperability specifications.

48

Image Product - Includes derived imagery products [13] (including text,
graphics, pictures, database entries, voice reports, etc. see [13]) and in this
definition, image products also include original source imagery and image
chips.

Quality of Service - A general concept for variations in service provided by
particular implementations of an API which do not have a direct effect upon
the functional parameters in an operation. A quality of service is used
directly in the facility to indicate whether a product transfer is immediate or
queued.

Reduced Resolution Data Set (RRDS) - A subsampled version of a source
image. Typically, RRDS are binary (power of 2) reductions of the source
image.

Region - An area of an array product containing array data (or pixels if this
is an image array product).

Server - Any software implementing one or more interfaces of the Image
Access Facility, Catalog Access Facility or Profile and Notification Facility.
An IAF server stores image products and allows library clients to search its
contents and retrieve image products. A CAF server stores metadata about
image products, that enables discovery and retrieval of associated attributes.
A PNF server stores and performs standing queries and notifies clients of
new information in the library.

Subimage - A whole product that is created on the fly as the result of a
get_subimage request. A subimage does not have to appear in the catalog.

Whole Product - A whole product is a self contained set of information
that would typically reside in a disk file. An example of a whole product is
any file-based image product or image. Whole products are distinguished
from array regions and tiles which are partial products.

49

8. Acronyms

AIMS Array Information Management System
API Application Program Interface
BQS Boolean Query Syntax
CAF Catalog Access Facility
CDR Critical Design Review
CIIF Common Imagery Interoperability Facilities
CIIP Common Imagery Interoperability Profile
CIL Command Image Library
CIO Central Imagery Office
CORBA Common Object Request Broker Architecture
COTS Commercial off-the-shelf
ELT Electronic Light Table
FTP File Transfer Protocol
GIF Graphics Interchange Format
GOTS Government off-the-shelf
HTTP Hypertext Transfer Protocol
IAF Image Access Facility
IAS Image Access Services
IDF Imagery Dissemination Facility
IDL Interface Definition Language
IPA Image Product Archive
IPL Image Product Library
ISO International Standard Organization
NIL National Image Library
OMG Object Management Group
PNF Profile and Notification Facility
RRDS Reduced Resolution Data Set
SDE Support Data Extension
TBD To Be Determined
TBR To Be Resolved
USIGS United States Imagery and Geospatial System

50

9. Points of Contact

Common Imagery Interoperability Working Group
Ron Burns , National Imagery and Mapping Agency

Phone: (703) 808-0891
Email: BurnsR@nima.mil

Project Lead - Support to CIIF Definition and Testing
John Polger , National Imagery and Mapping Agency

Phone: (202) 863-3004
FAX: (202) 488-0271

A3I CIIF Interface Definition
Charlie Green , Sierra Concepts, Inc.

Phone: (610) 347-0602
FAX: (610) 347-0602
Email: cpg@interramp.com

RFCs on this Specification
Tom Mowbray, PhD , The MITRE Corporation

Phone: (703) 883-6759
FAX: (703) 883-3315
Email: mowbray@mitre.org

Questions about this Specification & Support
Dave Lutz , The MITRE Corporation

Phone: (703) 883-7848
FAX: (703) 883-3315
Email: dlutz@mitre.org

A-1

10. Appendix A: Image Access Facility IDL
module IAS
{

// TYPE DEFINITIONS
 typedef any LocationSpec;
 typedef sequence < LocationSpec > LocationSpecList;
 typedef string RequestId;
 typedef sequence < RequestId > RequestIdList;
 struct NameValue
 {
 string name;
 any value;
 };
 typedef sequence < NameValue > NameValueList;
 typedef sequence < string > NameList;
 enum ResponseService
 {
 IMMEDIATE, QUEUED
 };
 enum CompletionState
 {
 COMPLETED, IN_PROGRESS, ABORTED, CANCELED,
 PENDING, OTHER
 };
 enum ElementType
 {
 BITDATA, BYTEDATA, SBYTEDATA, INT2DATA,
 SINT2DATA, INT4DATA, SINT4DATA, FLOAT4DATA,
 COMPLEXDATA, FLOAT8DATA, OTHERDATA
 };
 union Buffer switch (ElementType)
 {
 case BITDATA:
 sequence < octet > bit_data;
 case BYTEDATA:sequence < octet > ubyte_data;
 case SBYTEDATA:sequence < char >byte_data;
 case INT2DATA:sequence < unsigned short >ushort_data;
 case SINT2DATA:sequence < short >short_data;
 case INT4DATA:sequence < unsigned long >ulong_data;
 case SINT4DATA:sequence < long >long_data;
 case FLOAT4DATA:sequence < float >float_data;
 case COMPLEXDATA:sequence < float >complex_data;
 case FLOAT8DATA:sequence < double >double_data;

A-2

 default:sequence < octet > other_data;
 };

 typedef any RegionSpec;
 typedef sequence < RegionSpec > RegionSpecList;
 struct RegionData
 {
 RegionSpec region_spec;
 NameValueList region_header;
 ElementType element_type;
 Buffer region_data;
 };
 typedef sequence < RegionData > RegionDataList;

// The data type supplied by convention for exception_info
 struct ImageExceptionInfo
 {
 short status_code;
 string status_text;
 string exception_type;
 };

// Geographic Data Types
 struct GeoCoords
 {
 double lat, lon; // degrees

 };
 typedef sequence < GeoCoords > GeoCoordsList;

 enum ImageLocationKind
 {
 PathKind, HyperlinkKind,
 AddressKind
 };
 struct PathInfo
 {
 string user_name;
 string pass_word;
 string host_name;
 string path_name;
 string file_name;

A-3

 };

 // The Data Type supplied for Location Spec
 union ImageLocationSpec switch (ImageLocationKind)
 {
 case PathKind:
 PathInfo path;
 case HyperlinkKind:
 string hyperlink;
 case AddressKind:
 any address;
 };

 // Data Types Used with set and get parameters
 struct RegionParameters
 {
 unsigned long horizontal_size;
 unsigned long vertical_size;
 unsigned long resolution_level;
 };

 // Data type supplied for the get_region RegionSpec
 struct DisplayRegionSpec
 {
 long x_region_center;
 long y_region_center;
 };

 // Data type for the get_multiple_regions RegionSpec
 struct TileRegionSpec
 {
 long x_region_center;
 long y_region_center;
 unsigned long horizontal_size;
 unsigned long vertical_size;
 unsigned long resolution_level;
 };

// Query Results

//Forward reference
 interface ImageProduct;

 typedef string QueryId;
 typedef sequence < string > AttributeValues;

A-4

 struct QueryHit
 {
 ImageProduct product_ref;
 AttributeValues attributes;
 RegionData browse_image;
 };
 typedef sequence < QueryHit > QueryHitList;
 struct QueryResults
 {
 NameList attribute_names;
 QueryHitList query_hits;
 };

 struct QueryStatus
 {
 QueryId query_id;
 boolean new_results;
 };

 typedef sequence < QueryStatus > QueryStatusList;

//Exceptions

#define ExceptionInfo any exception_info;
 exception ResponseServiceNotAvailable {ExceptionInfo};
 exception TooManyRequests {ExceptionInfo};
 exception ProductUnavailable {ExceptionInfo};
 exception BadProductReference {ExceptionInfo};
 exception BadLocationSpec {ExceptionInfo};
 exception BadName {ExceptionInfo};
 exception BadValue {ExceptionInfo};
 exception BadRequestId {ExceptionInfo};
 exception BadCreationAttributes {ExceptionInfo};
 exception BadRegionSpec {ExceptionInfo};
 exception BadRegionData {ExceptionInfo};
 exception ArrayNotOpen {ExceptionInfo};
 exception AlreadyConnected {ExceptionInfo};
 exception BadOpenCriteria {ExceptionInfo};
 exception NoConnectionEstablished {ExceptionInfo};
 exception CannotSet {ExceptionInfo};
 exception BadCoord {ExceptionInfo};

A-5

 exception BadQuerySyntax {ExceptionInfo};
 exception BadAttribute {ExceptionInfo};
 exception BadQueryValue {ExceptionInfo};
 exception BadEllipse {ExceptionInfo};
 exception BadQueryId {ExceptionInfo};
 exception TooFewVertices {ExceptionInfo};
 exception TooManyVertices {ExceptionInfo};
 exception BadEmailAddress {ExceptionInfo};

//Interfaces

 interface Server
 {

 // Initialize library server connection
 void open (in NameValueList open_criteria)
 raises (AlreadyConnected, BadOpenCriteria)
 context ("ContextInfo");

 // Disconnection from library server
 void close ()
 raises (NoConnectionEstablished)
 context ("ContextInfo");
 };

 interface Parameters
 {

 void get_parameters (
 in NameList names_of_parameters_requested,
 out NameValueList parameter_values)

 raises (BadName) context ("ContextInfo");

 void set_parameters (
 in NameValueList parameter_values)

 raises (BadName, BadValue,
 CannotSet)

 context ("ContextInfo");
 };

 interface Product {};
 interface ImageProduct:Product, Parameters {};

A-6

// Image Access Interface "IAS::IA"
 interface IA:Server, Parameters
 {

// Prepare an array for region access
 void open_array (in ImageProduct product, in any access_kind)
 raises (BadProductReference)
 context ("ContextInfo");

 // Deallocate an array's resources - discontinue access
 void close_array (in ImageProduct product)
 raises (BadProductReference, ArrayNotOpen)
 context ("ContextInfo");

 // Retrieve region data to memory
 void get_region (

 in ImageProduct product,
 in RegionSpec region_spec,
 out RegionData region_data)

 raises (BadProductReference, BadRegionSpec,
 BadRegionData, ArrayNotOpen)

 context ("ContextInfo");

 // Retrieve multiple regions to memory
 void get_multiple_regions (

in ImageProduct product,
in RegionSpecList region_specs,
out RegionDataList region_data_list)

 raises (BadProductReference, BadRegionSpec,
 BadRegionData, ArrayNotOpen)

 context ("ContextInfo");

// Request to transfer whole products
 RequestIdList disseminate (

in Product product_to_disseminate,
in LocationSpecList destinations,
in ResponseService service)

 raises (BadProductReference, BadLocationSpec,
ResponseServiceNotAvailable, TooManyRequests)
 context ("ContextInfo");

 // Check completion status of request

A-7

 CompletionState check_completion (
 in RequestId request_identifier,
 out string state_information)

 raises (BadRequestId)
 context ("ContextInfo");

 // Cancel outstanding request
 CompletionState cancel (

 in RequestId request_identifier)
 raises (BadRequestId)
 context ("ContextInfo");

 // Store client generated information product
 ImageProduct create (in LocationSpec initial_product_data,

 in NameValueList creation_attributes,
 out RequestId request_id)

 raises (BadCreationAttributes, BadLocationSpec, TooManyRequests)
 context ("ContextInfo");

 // Retrieve subimage covering geographic area
 RequestId get_subimage (

 in ImageProduct image_array_product,
 in GeoCoords upper_left,
 in GeoCoords lower_right,
 in LocationSpec location)

 raises (BadProductReference, BadCoord,
 BadLocationSpec, TooManyRequests, BadRegionData)

 context ("ContextInfo");

 };

// Catalog Access Interface "IAS::CA"
 interface CA:Server, Parameters
 {

 QueryId boolean_query (
 in string boolean_query_expression)

 raises (BadQuerySyntax, BadAttribute,
 BadQueryValue, TooManyRequests)

 context ("ContextInfo");

 QueryId polygonal_query (
 in string boolean_query_expression,

A-8

 in GeoCoordsList polygon_vertices)
 raises (BadQuerySyntax, BadQueryValue, BadCoord,

 TooFewVertices, TooManyVertices, TooManyRequests)
 context ("ContextInfo");

 QueryId elliptical_query (
 in string boolean_query_expression,
 in GeoCoords ellipse_center,
 in double major_axis, // meters
 in double minor_axis,// meters
 in double azimuth) // decimal degrees from North

 raises (BadQuerySyntax, BadAttribute,
 BadQueryValue, BadCoord, BadEllipse, TooManyRequests)

 context ("ContextInfo");

 QueryId point_query (
 in string boolean_query_expression,
 in GeoCoords point_geo_location)

 raises (BadQuerySyntax, BadAttribute,
 BadQueryValue, BadCoord, TooManyRequests)

 context ("ContextInfo");

 void get_results (
 in QueryId query_result_identifier,
 in unsigned long number_of_hits_to_return,
 out QueryResults product_records)

 raises (BadQueryId)
 context ("ContextInfo");

 void free_results (
in QueryId query_result_identifier)

 raises (BadQueryId)
 context ("ContextInfo");

 };

// Forward reference to the PNF_Callback interface
 interface PNF_Callback;

// Profile & Notification Interface "IAS::PN"
 interface PN:CA
 { // Inherits from Catalog Access Interface

 void list_queries (out QueryStatusList queries)

A-9

 context ("ContextInfo");

 void remove_query (in QueryId query_identifier)
 raises (BadQueryId)
 context ("ContextInfo");

 void request_notification (
in QueryId query_identifier,
in PNF_Callback callback_objectref,
in string email_address)

 raises (BadQueryId, BadEmailAddress)
 context ("ContextInfo");

 };
};

module IA_CL
{

 interface PNF_Callback
 {

 void notify (
 in IAS::QueryId query_identifier,
 in IAS::QueryResults results)

 raises (IAS::BadQueryId)
 context ("ContextInfo");

 };
};

B-1

11. Appendix B: Access Management Interface IDL
module AMS
{

#define ExceptionInfo any exception_info;

 exception UnknownUseMode
 {
 ExceptionInfo
 };
 exception BadUseRequest
 {
 ExceptionInfo
 };

 interface AM
 {

 // Returns a list of available use modes
 IAS::NameList use_modes ();

 // Checks availability of product for use useMode
 boolean check_availability (in IAS::Product product, in string useMode)
 raises (UnknownUseMode, IAS::BadProductReference);

 // Request a product be made available for use useMode
 unsigned long request_availability (in IAS::Product product, in string
useMode)
 raises (UnknownUseMode, IAS::BadProductReference, BadUseRequest);
 };
};

C-1

12. Appendix C: Reference OMG Standard IDL

CORBA Standard Exceptions

#define ex_body {unsigned long minor; completion_status
completed;}

enum completion_status {COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE};
enum exception_type {NO_EXCEPTION, USER_EXCEPTION,
SYSTEM_EXCEPTION};

exception UNKNOWN ex_body;
exception BAD_PARAM ex_body;
exception NO_MEMORY ex_body;
exception IMP_LIMIT ex_body;
exception COMM_FAILURE ex_body;
exception INV_OBJREF ex_body;
exception NO_PERMISSION ex_body;
exception INTERNAL ex_body;
exception MARSHAL ex_body;
exception INITIALIZE ex_body;
exception NO_IMPLEMENT ex_body;
exception BAD_TYPECODE ex_body;
exception BAD_OPERATION ex_body;
exception NO_RESOURCES ex_body;
exception NO_RESPONSE ex_body;
exception PERSIST_STORE ex_body;
exception BAD_INV_ORDER ex_body;
exception TRANSIENT ex_body;
exception FREE_MEM ex_body;
exception INV_IDENT ex_body;
exception INV_FLAG ex_body;
exception INTF_REPOS ex_body;
exception BAD_CONTEXT ex_body;
exception OBJ_ADAPTER ex_body;
exception DATA_CONVERSION ex_body;
exception OBJECT_NOT_EXIST ex_body;

D-1

13. Appendix D: Related Facilities

The Mensuration Facility

The IAF and the Mensuration facility are related facilities that have
distinct roles. These two facilities can be used independently or together to
perform image access and mensuration.

When file-based retrieval is used, the Mensuration
facility is used separately after image product transfer and retrieval of any
attribute information from the image header and CAF.

When array-based retrieval is used, the IAF works in pixel space and the
Mensuration facility works to transform between pixel space and other spaces,
such as geographic coordinates.

An API is provided in IAF to support the transformation from client pixel
space to source image space at the base (i.e., R0) level of the source image.

The Image Security Facility

The IAF and CAF do not attempt to address security issues in any
comprehensive manner. The Image Security Facility is a future CIIF facility
specification which has this architectural charter.

 Minimal hooks are provided in IAF/CAF to make any subsequent
changes to client and service code minimal due to the introduction of the
Image Security facility.

The Locator Service

The Locator Service, defined in the CIIP, is a multi-faceted capability for
managing client access to multiple image libraries. Part of the capabilities of
the locator service are transparent to the client; relating to the automatic
routing of retrieval requests to alternate libraries. These capabilities are part
of the library implementation and are not within the scope of an interface
specification.

Another locator service capability addresses client selection of libraries.
In this case, there is system metadata information exposed to the client, and
this would expose additional client interfaces. There is a commercial standard
that can provide this service, i.e. the Trader Service.

D-2

The Trader Service originated with the Open Distributed Processing
standards work at ISO. This work resulted in the fast track adoption of OMG
IDL as the way to define software interface bindings for formal standards.
The work continued at the OMG on the creation of a commercial API for the
Trader Service (aka the Trader). This work is still in progress and is expected
to be completed in 1996.

The Trader Service is a yellow pages directory service. Service offerers
can advertise their capabilities in the Trader Services to enable discovery by
clients. In their advertisements, service offerers include their IDL interface
type and various characteristics that define and discriminate their services.

The Trader Service is highly applicable to the needs of the imagery
Locator Service. Using the Trader Service, image libraries can advertise their
service location, imagery coverages, and other characteristics. Clients can
select the appropriate image library (IPL, CIL, NIL , etc.) based upon these
characteristics. Each library can be uniquely referenced, using an object
reference obtained from the Trader Service. The client can select the
appropriate library based upon the choice of library object reference when
using the Image Access Service APIs.

